The effect of intensity and duration on the light-induced sodium and potassium currents in the Hermissenda type B photoreceptor.

نویسنده

  • Kim T Blackwell
چکیده

Light duration and intensity influence classical conditioning in Hermissenda through their effects on the light-induced currents. Furthermore, the contribution of voltage-dependent potassium currents to the long-lasting depolarization in type B photoreceptors depends on light-induced currents active at resting potentials. Thus, the present study measures the effect of holding potential, duration, and intensity on the light-induced currents in discontinuous single-electrode voltage clamp mode. Three distinct current components are distinguished by their temporal and voltage characteristics and sensitivity to pharmacological agents. One current component is a transient sodium current, I(Nalgt); another is a plateau sodium current, I(plateau), which persists for the duration of the light stimulus. Substitution of trimethylammonium chloride for sodium reduces both currents equally, suggesting that I(plateau) represents partial inactivation of I(Nalgt). The third current component is a prolonged reduction in potassium currents, I(Klgt); it is accompanied by an increase in input resistance, and it appears at potentials close to rest. An increase in light duration or intensity causes an increase in the peak conductance of both I(Nalgt) and I(Klgt). Latency of I(Nalgt) is decreased by intensity, whereas rise time is increased by duration. An increase in light duration or intensity causes an increase in the time-to-peak and duration of I(Klgt). Characteristics of these currents suggest that I(Klgt) is responsible for the long-lasting depolarization seen after light termination, and thus plays a role in classical conditioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Hermissenda type a and type B photoreceptors: response to light as a function of intensity and duration.

Hermissenda crassicornis is an invertebrate model used to study classical conditioning using light as the conditioned stimulus. The memory of the association is stored in type B photoreceptors, the output of which depends on interactions with type A photoreceptors. To understand the effect of classical conditioning on the output of type B photoreceptors in response to light, we measured the eff...

متن کامل

Ionic currents underlying difference in light response between type A and type B photoreceptors.

In Hermissenda crassicornis, the memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in both type A and type B photoreceptors. These photoreceptor types exhibit qualitatively different responses to light and current injection, and these differences shape the spatiotemporal firing patterns that control behavior. Thus the objective of the study was t...

متن کامل

Calcium waves and closure of potassium channels in response to GABA stimulation in Hermissenda type B photoreceptors.

Classical conditioning of Hermissenda crassicornis requires the paired presentation of a conditioned stimulus (light) and an unconditioned stimulus (turbulence). Light stimulation of photoreceptors leads to production of diacylglycerol, an activator of protein kinase C, and inositol triphosphate (IP(3)), which releases calcium from intracellular stores. Turbulence causes hair cells to release G...

متن کامل

Mechanisms of noise-induced improvement in light-intensity encoding in Hermissenda photoreceptor network.

In a companion paper we showed that random channel and synaptic noise improve the ability of a biologically realistic, GENESIS-based computational model of the Hermissenda eye to encode light intensity. In this paper we explore mechanisms for noise-induced improvement by examining contextual spike-timing relationships among neurons in the photoreceptor network. In other systems, synaptically co...

متن کامل

PP1 inhibitors depolarize Hermissenda photoreceptors and reduce K+ currents.

Previous research indicates that activation of protein kinase C (PKC) plays a critical role in the induction and maintenance of memory-related changes in neural excitability of Type B photoreceptors in the eyes of nudibranch mollusk Hermissenda crassicornis (H.c.). The enhanced excitability of B cells is due in part to PKC-mediated reduction in somatic K+ currents. Here we examined the effects ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 10  شماره 

صفحات  -

تاریخ انتشار 2002